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Context-aware intelligent assistant approach to
improving pilot’s situational awareness

Lilly Spirkovska
�

NASA Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000

Suresh K. Lodha

University of California, Computer Science Department, Santa Cruz, CA 95064

Abstract

Faulty decision making due to inaccurate or incomplete awareness of the situation tends
to be the prevailing cause of fatal general aviation accidents. Of these accidents, loss of
weather situational awareness accounts for the largest number of fatalities. We describe
a method for improving weather situational awareness through the support of a context-
aware, domain and task knowledgeable, personalized and adaptive assistant. The assistant
automatically monitors weather reports for the pilot’s route of flight and warns her of de-
tected anomalies. When and how warnings are issued is determined by phase of flight, the
pilot’s definition of acceptable weather conditions, and the pilot’s preferences for auto-
matic notification. In addition to automatic warnings, the pilot is able to verbally query for
weather and airport information. By noting the requests she makes during the approach
phase of flight, our system learns to provide the information without explicit requests on
subsequent flights with similar conditions. We show that our weather assistant decreases the
effort required to maintain situational awareness by more than 5.5 times when compared to
the conventional method of in-flight weather briefings.

1 Introduction

Only 4% of non-military aircraft are classified as commercial air carriers. The other
96% are considered general aviation (GA). The target of our research is the 75% of
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civil aircraft that are characterized as small aircraft with 2 to 6 seats and 1 or 2 pis-
ton engines. Within this group, loss of weather awareness historically has the high-
est fatality rate (73% fatality rate in 2001 (Landsberg, 2001)). Two reasons have
typically been cited as a cause or contributing factor: pre-flight weather briefings
are in a format that is difficult to interpret and in-flight weather briefings are diffi-
cult to obtain and interpret. Much previous research has focused on the pre-flight
briefing issue (National Weather Service, 2002; Ruokangas and Mengshoel, 2003;
Scanlon, 1994; Uckun et al., 1999) and has resulted in graphical representations
that are easier to interpret. Our current research focuses on the in-flight briefing
issues.

The conventional method for in-flight briefings is for the pilot to obtain via aircraft
radio a verbal update of conditions from a ground-based weather specialist. This
process has a number of disadvantages. First, it is difficult to create a big picture
of conditions from a verbal description. Next, a single specialist is responsible for
communicating with a potentially large number of pilots. The number of pilots
seeking information increases further when the weather is worst and updates are
most needed. This can lead to long waits for access and to shortened interactions
that allow the pilot to receive only very specific information. Last, and perhaps the
biggest disadvantage, the pilot must initiate the request for weather updates. Unless
the weather in the local area is deteriorating, pilots often rely on the accuracy of the
pre-flight briefing, dwindling their diversion options if they encounter unexpected
conditions later in the flight.

Utilizing a human-centered methodology, we developed a weather briefing sys-
tem to address the deficiencies of the conventional method. Because the in-flight
environment is very vision intensive, any new technology must minimize required
visual attention. Our system, Aviation Weather Environment (AWE), fulfills this re-
quirement in four ways. First, it automatically checks for weather updates, freeing
the pilot to manage essential flying tasks without distraction. Second, it provides
three different graphical representations of important weather elements overlayed
on top of a navigation map. The representations depict current and forecast condi-
tions in an easy to interpret manner and are geographically positioned next to each
applicable airport to enable the pilot to picture conditions along the route of flight.
Third, it implements a speech-based user interface to enable the pilot to extract
weather information verbally. Last, it implements an interface agent. The agent au-
tomatically checks for weather updates and warns the pilot of any conditions that do
not meet her preset limits. It is context-aware, deducing the current phase of flight
from the GPS location and the pilot-entered route of flight. It uses this context in-
formation to further filter the warnings that it issues. In addition, it tracks the pilot’s
verbal requests for information and learns her habits for the type of information of
interest at particular times during a flight.

The representations are described in Spirkovska and Lodha (2002) and the speech-
based user interface is described in Spirkovska and Lodha (2003). In this paper,

2



we describe the weather agent and the learning algorithm. We also report on the
methodology and results of an evaluation of whether AWE decreases a pilot’s work-
load and whether pilots enjoy interacting with it. We conclude with possibilities for
future enhancements.

2 Related Work

One of the more recent innovations in general aviation is the capability to receive
up-to-date digital weather data while in flight (FAA, 2002; Horne, 2002; McClel-
lan, 2003; Ruley, 2002). Two main approaches have emerged for this so-called
data link capability (AirCell, 2002; ARNAV, 2002; EchoFlight, 2002; Honeywell,
2002). One utilizes ground station networks and continuously broadcasts weather
products; the other relies on low-Earth-orbit communication satellites to respond to
explicit pilot requests for individual weather reports. The method of pilot interac-
tion with each system differs due to the approach of transmission (Collins, 2003).
In the broadcast approach, the pilot is provided with all weather reports for a large
geographic area. Most products are broadcast once every five minutes. In contrast,
the request-and-reply approach requires that the pilot request an individual report
(e.g., current conditions at SFO airport). After a delay (which can vary from one to
twenty minutes), the report is transmitted to the pilot.

In both cases, the pilot has access to NEXRAD radar reports, current weather re-
ports, and forecast weather reports. NEXRAD radar reports are shown graphically,
forecast conditions are shown textually, and current conditions can be shown either
textually or graphically. The graphical depiction of current conditions shows a very
small portion of the available data; to get the full report, the pilot must read the
textual report. In any case, the weather reports are provided to the pilot to filter for
appropriateness to route-of-flight and to interpret without any automated assistance.

In contrast to the above methods, research is underway on automated assistance to
improve pilots’ situational awareness (Ballin et al., 2002; Endsley, 1997; Olson and
Sarter, 1998; Painter et al., 1997; Ruokangas and Mengshoel, 2003; Uckun et al.,
1999). One such decision support system, AWARE, aims to help pilots interpret
weather reports and is mostly closely related to ours (Ruokangas and Mengshoel,
2003). In-flight, AWARE monitors the proximity of hazards such as thunderstorms
and informs the pilot visually by color-coding the corresponding button on a graph-
ical user interface. The pilot can then drill-down to textual information or examine
NEXRAD radar data to fully understand the situation. Our system differs in the
weather elements we consider, the additional flexibility and support we offer the
pilot to filter the available data, and the multimodal approach we use to inform her
of relevant anomalies.
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3 Weather Agent

AWE’s weather agent is a context-aware, task-knowledgeable, personalized, and
adaptive assistant. The task of the weather agent is to provide relevant in-flight
weather data to the pilot at a relevant time with or without an explicit pilot request.
The weather agent has built-in knowledge of the domain, the task, and the pilot. Do-
main knowledge is used to determine if a parameter or a trend is cause for concern.
Task knowledge is used to determine if that data is relevant in a particular phase of
flight. And pilot knowledge is used to determine when and how to provide relevant
data to the pilot without being obtrusive and bothersome. Based on an analysis of
the pilot’s workload and need for weather updates during different phases of flight,
we limit the scope of the agent’s capabilities to the cruise and approach phases.
All of AWE’s capabilities are available via direct manipulation during all phases of
flight, but unsolicited suggestions are offered only during cruise and approach.

3.1 Domain Knowledge

Wind, visibility, cloud height, temperature, turbulence, and icing can each adversely
affect a flight. Wind, visibility, and cloud height are most often considered a cause
or factor in general aviation aircraft accidents (Keel et al., 2000). Airport-specific
current condition reports, airport-specific forecasts, and winds aloft reports are
most frequently consulted by pilots (Keel et al., 2000) to obtain data about winds
aloft, surface winds, cloud height, visibility, temperature, and dew point. AWE col-
lects these three reports about all route airports, from departure through destination.
It then filters the data using built-in knowledge of which elements affect pilots’ de-
cisions. All other data can safely be ignored, though it is available for the pilot to
read if desired. In addition to weather data, AWE uses data about the airport layout
(e.g., orientation of runways and the traffic pattern) to further assist with decisions
regarding landing.

3.2 Task Knowledge

Although domain-based filtering decreases the amount of data significantly, not all
of the remaining data is relevant to the task. AWE uses task knowledge coded in a
rule-base to further reduce unnecessary data.

During cruise, the pilot may be interested in (Keel et al., 2000): the local altime-
ter setting; changes in winds aloft if the destination is no longer within fuel range
constraints; significant discrepancies between the current conditions and the con-
ditions forecast for the time period; current conditions at the destination and en-
route airports that do not meet her constraints; and revised forecasts that do not
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meet her constraints. Each constraint can be specified by the pilot, as described
below. Some constraints, such as visibility, can be checked against incoming data
directly. Other constraints require multiple sources of data. For example, checking
crosswind constraints requires incoming data and knowledge of the airport layout.
Similarly, correlation between actual and forecast conditions requires inspecting
multiple incoming data elements. Checking these compound constraints requires
the most pilot cognitive effort. AWE uses rules and heuristics to assist the pilot by
automating the checks.

During the approach phase, determined from GPS location and the flight plan, the
pilot may be interested in destination area conditions, including visibility, ceiling,
surface wind, and density altitude; the airport layout including runway orientation,
field elevation, pattern altitude, location of the pattern (i.e., left or right traffic pat-
tern), and runway length; and altimeter setting for the destination area. If conditions
are deteriorating, she may want to know the nearest airport with acceptable condi-
tions. Even when conditions at the destination airport are acceptable, the proximity
of adverse conditions may also influence her expectations for landing there. As de-
scribed below, AWE attempts to assist the pilot by tracking the above information
and informing her only when appropriate as determined by encoded pilot prefer-
ences and relevance to the current phase of flight.

3.3 Pilot Knowledge

Each pilot’s go/no-go decision is influenced by her own characterization of the
weather conditions. For example, one pilot’s comfort level is exceeded with a 15
knot surface wind; another pilot is not concerned until the wind exceeds 30 knots.
Additionally, each pilot’s desire for automated alerts differs. Whereas one pilot may
want automatic alerts if the visibility at her destination decreases below 10 miles,
another may prefer to query manually until it decreases below 4 miles, and yet an-
other may be annoyed by interruptions and would rather always query manually.
The desired form of alerts also varies. Some pilots dislike verbal messages - they
are content to fly along listening to air traffic controllers (ATC), other pilots, or
their passengers and not have a computer talking at them. Others find that they pre-
fer to look out the window and may miss information unless it is provided aurally.
AWE provides personalized assistance by knowing each pilot’s definition of ac-
ceptable weather conditions and if, when, and how to volunteer information about
deteriorating conditions.

Defining Acceptable Conditions Weather influences each pilot’s continue/land-
now en-route decision differently. To accommodate different experience or com-
fort levels, each pilot can personalize AWE to warn her of conditions she considers
adverse. Via the graphical user interface shown in Figure 1, the pilot can set thresh-
olds for any of a large set of situations. For example, she can specify that she wants
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Fig. 1. Pilot preferences window. The pilot can modify stereotypical values to better reflect
her preferences.

to be informed of any revised forecasts that predict crosswind values at the des-
tination airport greater than 15 kts. In addition to weather elements, the pilot can
specify minimum acceptable runway length; whether AWE should select alternate
airports near the current location or near the original destination; performance char-
acteristics (horsepower, maximum ceiling, and usable fuel) of the aircraft; typical
cruising altitude and power settings for short, medium, and long trips; and a def-
inition of short, medium, and long trips. Because of the multitude of options and
to obviate the need for each user to personalize it prior to use, AWE begins with
limits reasonable for a typical pilot, as suggested by Elaine Rich’s (Rich, 1998)
stereotypical user model. The pilot can then adjust the limits as desired.

Defining Notification Conditions For an individual pilot, the type of assistance de-
sired may vary with the length of a flight. For example, if a pilot always departs with
at least enough fuel to easily complete a medium length trip, she may be concerned
about winds aloft changes only on a long flight. On the other hand, she may always
want the most recent altimeter setting, even on local flights. To accommodate indi-
vidual preferences for automatic notification, AWE maintains when the pilot wants
to be informed about each condition defined by the eight combinations of the cross
product of (short, medium, long) crossed with (volunteer, query). Volunteer and
query refer to whether AWE volunteers that it has detected conditions outside the
stated limits, or whether it waits for the pilot to query for the information. Similar
to the limits, preferences for notification are initialized for a stereotypical pilot and
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can be adjusted to suit an individual pilot.

Defining Notification Methods In addition to when the pilot wants to be informed,
AWE maintains a list of how she wants to be informed about each condition: ver-
bally, visually, or with an audio alarm. AWE is initialized to use all three options for
each condition, but a pilot can adjust this to suit her preferences. Both visual and
verbal warnings are terse: they provide only enough information to make the pilot
aware of the conditions; additional details can be extracted via direct manipulation.
Because the pilot may be busy with other tasks when warnings are issued, a his-
torical record of visual warnings is available in a separate AWE messages scrolling
window, shown in Figure 2.

Fig. 2. AWE Messages window. The pilot can scroll through a history of messages provided
by AWE.

After extended interaction with a particular pilot, AWE may determine that the
above notification items are inadequate for her. It may detect that she often asks
for additional information or asks for volunteered information at additional points
along the flight, not just when new weather reports are received. In this case, AWE
automatically expands the set of information it provides by applying machine learn-
ing techniques to learn the pilot’s habits, as described in the next section.

4 Automatic Adaptation

Many pilots develop habits for when they want certain information. For example,
a pilot may have a habit of looking up information about the airport when within
30 miles, getting the destination surface wind and verifying the runway orientation
when within 20 miles, and then verifying the pattern altitude when within 10 miles.
When two pilots fly together often, even though the second pilot is not a required
crew member, he is often used as an additional resource, especially when the pilot’s
workload increases during the approach phase. After enough flights together, the
second pilot may learn to anticipate when the pilot will ask for his assistance.

AWE implements similar anticipation by tracking what type of information the pi-
lot asks for (e.g. pattern altitude, nearest IFR conditions, etc.), and when (distance
from the destination and weather conditions at the destination) she asks for it. AWE
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fulfills the request and adds a vector representing the directive to its set of direc-
tives used to learn the pilot’s habits. After five requests for a particular type of
information, AWE generalizes the habit using a modified reflex learning technique
described below. When similar conditions are encountered, AWE volunteers the in-
formation without prompting. As an example, if she asks for nearest IFR conditions
when she is within 50 miles from the airport and the temperature-dew point spread
is 3 degrees Celsius, AWE may learn that it should volunteer that information with-
out prompting. However, if the training set for IFR conditions consists of (density
altitude, temperature-dew point spreads) of

�
. . . , (2500’, 3), (500’, 3), (1000’, 2),

. . . � , ignoring all the other elements, it may also learn that if the density altitude is
less than 2500’, it should volunteer nearest IFR conditions. Like a human assistant,
AWE improves its understanding of the pilot’s habits with additional training. Also
like a pilot assistant, it uses domain knowledge to eliminate irrelevant generaliza-
tions.

Learning Algorithm Details There are various methods for teaching machines
how to extract commonalities between situations in order to make decisions using
resulting generalizations. Typically, a set of example situations is encoded by a set
of properties and the learning algorithm must formulate general descriptions for
related subsets of situations. When a new situation is presented to the system, it
uses these descriptions to determine what type of situation most closely resembles
it. Using this classification, it could then decide what to do next.

Each of AWE’s example situations is encoded by the ten-tuple (type of information
requested, distance to destination, trip length, visibility, ceiling, wind, crosswind,
temperature, temperature-dew point spread, density altitude) where the last seven
elements represent the weather conditions at the destination airport. By using the
type of information requested property as the classification for the example, we
could apply a decision tree (Russell and Norvig, 1995) or a neural network (Rumel-
hart et al., 1986) algorithm to extract the type of conditions that prompt the pilot to
seek that type of information. Or we could apply a Bayesian classification system
(Cheeseman and Stutz, 1996) directly on the 10-element vectors and have it sepa-
rate the examples into related subsets that describe the pilot’s habits. However, all
three techniques require a large set of training examples to enable relevant learn-
ing. Without adequate training data, the system could easily extract the unlikely
rule mentioned previously: density altitude of less than 2500’ prompts the pilot to
request IFR conditions.

To make AWE’s learning algorithm effective with less training data, we chose to
integrate domain specific knowledge with a reflex, or stimuli-response, learning ap-
proach (Russell and Norvig, 1995). Although the pilot may ask for various items
during the approach and may ask for them to be provided using the three differ-
ent formats, the AWE prototype only tracks the pilot’s habits with eight major
approach-relevant directives and only when she asks about the destination airport.
Each time one of these directives is issued, the 10-property description is added to
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the training set, and AWE is retrained to include the new example in determining
how far out and under what weather conditions AWE should volunteer a response
without prompting. To reduce the likelihood of misinterpreting a non-habitual di-
rective as a habit, generalization occurs for a type of information only if there are
at least five examples.

The learning algorithm, Enhanced Algorithm for Reflex Learning (EARL), begins
by separating training examples by type of information requested. Each subset is
learned separately. Reflex learning relies on memorizing each training example to
determine future action under the same conditions. EARL enhances this approach
by generalizing from the given examples to determine future action under similar
but unseen conditions. It accomplishes this by fusing the values for each property
using a union, minimum, maximum, or averaging operation depending on the prop-
erty. Trip length is fused by taking the union of the values evident in the examples.
Thus, if the examples represent directives issued on three short and four medium
length trips, the fused value will be (small or medium), but not long. Distance from
destination is fused by taking an average of the example values. Visibility, ceil-
ing, and temperature-dew point spread are fused by taking the maximum value for
each property, and the remaining properties (wind speed, crosswind, temperature,
and density altitude) are fused by taking their respective minimum value. Hence,
EARL may learn to provide a particular type of information when the visibility is
less than 20, wind is greater than 15, or the temperature is greater than 80 degrees
Fahrenheit. EARL further enhances the reflex learning approach by applying do-
main knowledge: EARL is provided with a list of relevant properties for each type
of information requested. For example, for say density altitude requests, only the
temperature and density altitude properties likely contribute to a pilot’s decision
to make the request. This prevents it from learning from irrelevant coincidences of
data combinations. Finally, learning based on a small set of examples could lead to
the undesired extraction of unforeseen habits. AWE provides a graphical method,
shown in Figure 3, to enable the pilot to view, modify, and repress learned rules to
better reflect her desired interaction.

5 Workload Reduction Evaluation

The design of AWE was influenced by the first author’s experiences as a general
aviation pilot. In addition, feedback was taken on many issues at several stages from
different pilots to ensure that the system remains pilot-friendly and usable. Finally,
the system was more formally evaluated by pilots. The evaluations focused on de-
termining whether pilots found AWE to be a useful tool and whether it decreased
their workload. The representation aspect of AWE was compared with several
other weather data visualization systems (National Weather Service, 2002; Pruyn
and Greenberg, 1993; Scanlon, 1994; Uckun et al., 1999; The-Weather-Channel,
2002) and the pilots’ opinions were elicited via a questionnaire and short interview.
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Fig. 3. AWE Learned Habit Modification Window. The pilot can view, modify, or repress
habits learned by AWE to better reflect her information needs.

The results of the representation evaluation are presented in Spirkovska and Lodha
(2002). The weather agent aspect was evaluated using a part-task simulation and a
post-simulation questionnaire to obtain quantitative workload reduction values and
pilots’ subjective opinions. We describe the process and results of the workload
evaluations below.

The primary question of the agent evaluation was Does AWE reduce the pilot’s
weather-related decision making workload? Specifically, we wanted to answer Is
the time to make a decision decreased by AWE? Related follow-up questions were
If it does, how? If not, how can it be improved? Although the weather agent is
designed primarily to provide assistance in flight, we include a brief description
and results of the evaluation of AWE for pre-flight tasks for completeness.

Pilots Six general aviation pilots participated in the workload reduction studies.
The approximate total flight time of the pilots ranged from 160 hours to 3200 hours
with a mean of 1326 hours and a median of 650 hours.

Pre-flight To measure preflight workload reduction, we asked each pilot to inter-
pret the weather for a pre-defined route. The pilots were given pertinent information
about the aircraft. Additionally, to eliminate variations due to different pilots’ def-
inition of acceptable weather, they were instructed to assume a set of pilot limits
for visibility, ceiling, and surface wind speed. Prior to beginning the study, we pro-
vided the go/no-go decision questions we would ask at the conclusion of the study.
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Finally, we answered any logistic questions they had.

Each pilot was provided with two routes, counterbalanced in the type of weather
conditions, number of en-route report elements, and distances. Two sets of airports
were selected to decrease possible effects of transferring learned knowledge about
the airports and regions between tasks. Each pilot was assigned two tasks. For both
tasks, we measured the amount of time required to answer the go/no-go questions.
For the first task, the pilots were provided a standard computer weather briefing
for a 233 nm flight. For the second task, the same pilots were provided with an
AWE briefing for a different 223 nm flight. The AWE briefing consisted of the pilot
selecting desired values for departure time, cruising altitude and airspeed and then
viewing current and forecast conditions along a pilot-specified route or the area of
interest. An example view of an AWE display of current conditions and winds aloft
for a four-airport route is shown in Figure 4. It shows two of the three possible
representations - textual and symbolic. An example view utilizing the triangular
icon representation to display forecast conditions for a particular region is shown
in Figure 5. More details on how to interpret the figures are available in Spirkovska
and Lodha (2002).

Answering the questions using the conventional briefing required an average of
60.2 minutes, whereas answering them using AWE required an average of 23.5
minutes. Hence, answering preflight relevant questions is more than 2.5 times faster
with AWE. Additionally, the AWE times include the time to get comfortable with
the system.

In-flight For the in-flight interaction evaluation, due to constraints with aircraft,
data transmission, and pilot resources, we measured workload reduction in a ground-
based part-task simulation. The same six participants were randomly divided into
two groups. Half of the participants had access to the conventional method of in-
flight weather updates - known as Flight Watch - and the other half had access
to AWE updates. The participants were all presented with a pre-assigned route of
flight and a pre-flight briefing. The weather conditions were forecast to be ideal for
the first half of the flight and marginal but acceptable for the second half. The as-
signed route required four hours of flight time but we started the simulation already
established in cruise 1.5 hours into the flight. The pretense of flying the first half
allowed us to simulate restricted access to weather updates - rather than beginning
the simulation with the most recent weather reports, they began with two hour old
reports. This increased the likelihood of getting an in-flight weather update. To en-
sure an update request, we forced a diversion: they were informed that the clouds
were too low to continue using the original route of flight. However, to evaluate
the effectiveness of AWE during the approach phase, after they planned for the di-
version, they were informed that the clouds cleared along the original route and to
continue to the original destination. We discuss the measurements taken in a later
subsection.
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Fig. 4. Route-specific current conditions and winds aloft shown alongside a pilot-selected
route. Wind velocity at the pilot selected altitude is depicted graphically with a black arrow.
The airport conditions are shown using the symbolic representation (the vertical rectangle)
and the textual representation. The symbolic representation shows, top to bottom, surface
wind velocity, cloud coverage at altitudes from 12,000 feet down to the surface, and surface
visibility. The textual representation shows all the elements available in computer briefing
reports except for remarks.

To further decrease the demand on the participants’ time, we accelerated simulated
time by a factor of six, thereby decreasing the simulated flight time from 2.5 hours
to 25 minutes. The timing of issuance of weather reports was accelerated to main-
tain consistency.

To simulate the workload of a flight, we designed a simulated cockpit, shown in
Figure 6. In the real world, pilots must fly the aircraft, maintaining desired altitude,
airspeed, and heading; scan the engine instruments, looking for anomalies; scan for
traffic, maneuvering to maintain separation; and maintain weather awareness. The
virtual cockpit simulates these to varying degrees. The participants were provided
with complete instructions on how to fly the route and deal with traffic and engine
anomalies.

Measurements With both sets of pilots busy ”flying” the aircraft and scanning for
traffic and engine anomalies, we compared their level of weather awareness as well
as the workload required to maintain it. To eliminate having them work toward a
task, the participants were not aware of the parameters we were measuring. Specif-

12



Fig. 5. Area-wide forecast conditions display using triangular icons. The top, lower left,
lower right, and the middle subtriangles represent winds, visibility, clouds and temperature/
dew point spread conditions respectively. Red, yellow, white, and gray colors indicate alert,
caution, normal conditions, and unavailable respectively.

ically, we measured the amount of time spent getting updated weather conditions,
how quickly they formulated an alternate plan for the forced diversion, and how
often they updated the altimeter setting along with the time required to do so. We
also measured their performance in detecting the anomalies presented by the vir-
tual aircraft, how quickly they noticed traffic, and how quickly they returned to
the desired altitude, heading, and airspeed. These quantities provided a measure
of whether they ignored the flying task in preference to gathering weather data. In
addition, the pilots getting AWE updates were asked about their satisfaction with
AWE and suggestions for increasing its usefulness. The pilots using Flight Watch
were given a demonstration of AWE and asked the same questions.

Additional Logistics Because we were doing a ground-based simulation, using
simulated weather data, and an accelerated clock, Flight Watch was simulated. The
role of Flight Watch was filled by another pilot who could be contacted via tele-
phone (to simulate some of the non face-to-face communication issues). We did not
simulate possible delays due to Flight Watch filling other pilots’ requests. Hence,
the measurements for the pseudo Flight Watch group represent a lower bound. The
pilots were not restricted in the type of questions they could ask nor in the level of
processing and analysis they wanted Flight Watch to provide. The only requirement
was that they continue to fly the simulated aircraft while speaking to pseudo Flight
Watch.

Communication with AWE was also assisted. The recognition accuracy of the
speech recognition system we used (IBM ViaVoice) increases with speaker training
- that is, speaker-dependent recognition accuracy is higher than speaker-independent
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Fig. 6. AWE Evaluation Simulator. Used to simulate workload of a VFR flight. The pi-
lot must look for traffic; maintain desired airspeed, heading, and altitude; monitor engine
parameters; manage fuel; and tune to appropriate weather frequencies for weather and al-
timeter setting updates.

accuracy. The grammar, though designed to mimic other pilot communication, re-
quires some learning effort by the pilot. Testing for learnability requires repetitive
usage. Instead, we chose to use available time with pilots to measure other aspects.
To eliminate extra pilot effort required to train ViaVoice and to learn the grammar,
we assisted the pilot by being a conduit for verbal requests to AWE. The simulation
assistant (who previously trained ViaVoice) issued the spoken directives to AWE.

The pilots had two monitors directly in front of them. One monitor displayed the
simulated cockpit while the other provided access to AWE. The pilots could use
direct manipulation techniques (using either the GUI or speech user interface) to
obtain current and forecast conditions and also rely on the weather agent to notify
them (verbally, visually, or with an audio alarm) of updated conditions that may
affect their flights. Although the route of flight was pre-selected, the pilots were
not restricted in which airports they could seek information about or the type of
information desired.

Each evaluation session lasted approximately 60 minutes and included time for fa-
miliarization with the virtual cockpit, for a preflight weather briefing, for a brief
familiarization with AWE, for flying the flight, and for debrief. The AWE famil-
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Fig. 7. Results of in-flight workload reduction user study. All times shown are in seconds.

iarization took the form of a demonstration for the Flight Watch group and was
presented at the end of the session.

Results The results of the in-flight evaluation are shown in Figure 7 and Figure 8.
On average, the pseudo Flight Watch group spent 946 seconds tracking the weather,
mostly to select an alternate; detected the three major categories of anomalies (traf-
fic, flight instruments, and engine instruments) in 36 seconds; and spent a couple of
minutes formulating a landing plan. In general, they updated their altimeter setting
after approximately 30 simulated minutes of flight and once again prior to landing.

On average, the AWE group spent 192 seconds tracking the weather, again mostly
to select an alternate; detected the three major categories of anomalies in 12 sec-
onds; and spent less than one minute formulating a landing plan. They each main-
tained a current altimeter setting within the precision defined by the default pilot
preferences (0.02).

In the post simulation questionnaire, the AWE group was asked about the inter-
action experience. Specifically, they were asked how much they liked or disliked
the automatic alerts about deteriorating weather, the completeness of the set of
preferences they can specify and suggestions for others, how much they liked that
it could learn their habits, and suggestions for improvements. The pseudo Flight
Watch group was given a demo of AWE after their simulations and asked their
opinion on the same questions. The number of interactions for each participant was
not adequate to enable AWE to learn his habits. Thus, the effect of the learning was
experienced using the habits of the simulation assistant.

On average, the pilots gave AWE a score of 1.5 (where 1 is liked it a lot and 5 is
did not like it at all) for how much they liked automatic alerts, 1 for preference
completeness, and 1.8 for learning their habits. For automatic alerts, the two pilots
who gave it a score worse than 1 (score of 2 and 3, respectively) cited that they
do not necessarily want that much information, especially for en-route airports.
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Fig. 8. Results of anomaly detection during in-flight workload study. Recognition times, in
seconds, are shown for the three major anomaly categories. Pilots 1, 3, and 5 used AWE for
weather updates, whereas pilots 2, 4, and 6 used Flight Watch.

We pointed out that they could set the pilot preferences to not volunteer en-route
information or to conditions they would want alerts for rather than our very con-
servative default values. Habit learning was rated worse than 1 by three pilots. One
was concerned about privacy issues - he did not want his personal habits for air-
port information retrieval stored and possibly revealed. Another indicated that he
would like such information at unfamiliar airports, but not at the airports he flies
from regularly since he already has that information memorized. The third pilot did
not specify a reason. Pilot preferences were considered complete by nearly all the
pilots. The only one who rated it a 2 did not offer suggestions on missing items.
We expect these numbers and opinions to change with extended use of AWE and
especially with in-flight use where the incentive to stay aware of weather changes
is significantly increased. With extended use, they would no doubt find the features
they like or dislike and the features that need to be added.

6 Future Enhancements

After a single use, our pilot evaluators suggested improvements in habit tracking,
displays, overlays, and additional functionality. The evaluations studies demon-
strate the workload reduction possible with use of the weather agent. They also
resulted in suggestions for further improvements, including automatically extrap-
olating the values of preferences based on conditions observed during a series of
flights; notifying the pilot which preferences she habitually violates; overlaying
other types of restrictions (e.g., active military training routes, active military oper-
ation areas, temporary flight restriction areas) to help with route or diversion plan-
ning; and automatically highlighting suggested alternate airports and providing ini-
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tial heading from current position.

In addition to these features, additional research can focus on utilizing more ca-
pable learning algorithms to expand what information can be learned. Moreover,
we could further improve pilot’s situational awareness by integrating AWE with
terrain information, traffic information, navigation information, and aircraft health
information. Individual agents responsible for each system separately could collab-
orate to determine the best course of action. Finally, the presentation of information
and advice can utilize additional methods, such as a head-mounted display, tactile
feedback, or data sonification.
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